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Polymer Chain Size from Geodesic Path and
Geometrical Bolyai�Lobachevskij Partition Function.
Application to Swelling of Macromolecules in
Solution and Micellar Growth
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The Bolyai�Lobachevskij (BL) formula, relating parallelism angle and distance
in a Non-Euclidean space, is used to introduce a geometrical partition function.
Employing a correspondence between Boltzmann factor and BL characteristic
length, allows us to get a simple relation for average size and space curvature,
which is the analogy to the equation for the mean energy derived from the
ordinary partition function. Due to the equivalence, recently proposed, between
a chain molecule in a liquid and a geodesic path in a relativistic space, the equa-
tion obtained is expected to be suitable for describing geometrical phenomena
in polymer-like networks. Simple applications to swelling of polymer solutions
and micellar growth are presented and discussed.

KEY WORDS: Geometrical partition function; Bolyai�Lobachevsky formula;
Geodesic path; polymer chain size.

INTRODUCTION

The roles played by topology in quantum mechanics, field theory and
polymer physics are of great importance, and closely related to each
others.(1) For instance, the Aharonov�Bohm quantum effect has its anology
in the statistics of planar Brownian walks in the presence of a hole, (2) while
it has been pointed out that polymer representation has a remarkable role
in gravity.(3) Basically, topological constraints in polymer systems can be
seen as restrictions to the phase space originally available, as determined
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by uncrossability of real chain molecules, and have been tackled success-
fully according to the famous reptation and universality concepts.(4)

More recently,(5) scaling laws for ideal and real macromolecular chains
have been derived by regarding a simple liquid as a (weak) relativistic con-
tinuum. A change in the diffusion coefficient, caused by a macromolecule
that replaces N liquid units, results in a space curvature which can be dealt
with as a perturbation to the pure Euclidean (the so-called Minkowskian)
metric for the flat space.(6) To model concentrated polymer solutions, we
took then advantage of the so-called Principle of Equivalence, (7) stating
that it is always possible to find a reference system where the law of motion
(here, of diffusion) take the same form as it would be within an ordinary
Euclidean space. In this way, the chain-in-a-tube becomes representative of
a geodesic path, i.e., the shortest (o longest) path between two spacetime
events, end-to-end distance being measured by the proper time.(4�7)

In this paper, to describe the spatial part of a geodesic curve, the
Bolyai�Lobachevskij (hereinafter BL) law is applied to build up a geomet-
rical partition function. A correspondence set for Boltmann factor and BL
constant, enables us to get the chain size as a function of the space cur-
vature. Such a result further supports a possible geometrical formulation of
statistical thermodynamics, recently proposed through a new scaling concept
for geometry.(8) In the last section, the relationship achieved is employed to
model swelling of polymer solutions and micellar growth.

THEORETICAL SECTION

Literature on Non-Euclidean geometry starts in 1829,(9) with studies
by N. Lobachevskij, who calculated the natural unit of distance definable
in a Non-Euclidean space. Consider the right triangle of Fig. 1, provided

Fig. 1. Graphical illustration of unit of distance in a Non-Euclidean space and BL formula.
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with fixed edge *� . When the vertex V is moving infinitely far away, the
angle % increases up to a limit value that must be less than a right angle,
:<?�2. He proved that(10) *� =&ln tan(:�2). Afterwards, the BL formula (10)

provided a generalization of this achievement by relating the parallelism
angle (:) to the distance (*) through a characteristic length value (L). It is
one of the most remarkable equations in all of mathematics, and is usually
written as:

exp \&
*

L+=tan
:
2

(1)

Originally, Lobachevskij used the notation :=:(*) to indicate the paral-
lelism angle at the distance *. In ordinary geometry, one constantly has
:=?�2. In a Non-Euclidean space, the parallelism angle depends instead
upon distance and BL length. L, which may in turn be depending on *,
specifies the space curvature(11, 12) and, from Eq. (1), one gets two limit
conditions:

lim
L � l

:(*)={?�2
0

l=�
l=0

(2)

The first case corresponds to ordinary geometry, whereas the second condi-
tion points out a space where the parallelism angle is always zero (say,
a space with maximum hyperbolicity). It is worth noting that in a geometry
which is physically real, the characteristic length is extremely large, (13) but
can never be set to L=�.

This paper deal with applications of the BL formula to investigate
some simple geometrical properties of polymers in solution. The equiv-
alence between macromolecules in a liquid and metric transformations in
a relativistic Brownian space enables us to use Eq. (1). One has only to
remind that : and * account for the polymer chain curvature implied by a
given L value. BL length is then expected to depend upon physical quan-
tities that govern diffusion of macromolecules. However, Eq. (1) alone is
not sufficient to get a description of a polymer system. It should somewhat
take into consideration statistics of chain displacement lengths, and there-
fore be completed through other equations. One effective way to do so is
certainly employing the partition function concept and combining BL
formula and Boltzmann probability, which are both involving exponential
terms. We only need to state some correspondence between Boltzmann
factor and BL constant, as supported by a recent geometrical formulation
of statistical thermodynamics.(8)
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Let Z;=� e&;= be the ordinary partition function, (14) where =k is the
energy of the k th state and ;=1�kBT is the inverse of the Boltzmann con-
stant kB times the absolute temperature T. Comparing the Boltzmann
probability to the left side of Eq. (1), setting =#4* and introducing an
average BL length(15) L� , allow us to write:

=&4� * (3)

where 4� =kBT�L� has the dimension of an energy per unit length. Equa-
tion (3) identifies a partition function (Z*) based on the geometrical
features of the space according to Eq. (1). For a system characterized by a
discrete length distribution, say [*j ], we have:

Z*=:
j

e&*j �L� (4)

and, in a continuous domain:

Z*=|
�

0
`(r) e&r�L� dr (5)

where `=`(r) is the state density as a function of the radial coordinate.(16)

Since 1�L� is the analogy to ;, let *� #- *� 2, Eqs. (4)�(5) lead to:(14, 16)

*�
L�

=\� ln Z*

� ln L� + (6)

which stands for the well-known law =� =&(� ln Z; ��;), provided = O *
and ; O 1�L� . In the Appendix, two simple calculations are done when
(i) a normal distribution, with fixed root mean square _, and (ii) an expo-
nential distribution, with average length L, are considered. Adopting(17)

`(r) B e&r2�?_2
, the first case implies:

a(x)=
e&x 2

1&8(x)
&?1�2x (7)

with a=*� �_ and x=?1�2_�2L� , and where 8=8(x) denotes the so-called
probability (or error) integral. In (ii), let(17) `(r) B e&r�L (say, a micellar
system(18)) one obtains:

b( y)=(1+ y)&1 (8)
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where b=*� �L and y=L�L� are conceptually equivalent to a and x in
Eq. (7). More generally, when `(r) B r&&1e&r�L and & # R+, it can be
proved (see the Appendix) that Eq. (5) holds with b=*� �&L.

In the next section, we will discuss and apply Eqs. (7)�(8) to experi-
mental data, concerning (i) swelling of polymer networks and (ii) micellar
growth.

RESULTS AND DISCUSSION

In (i), Eq. (7) gives the ratio between the average arc lengths of two
geodesic curves, i.e., Non-Euclidean (*� ) and Euclidean (_) respectively,
and admits two limit conditions:

lim
L� � l

a(x)={1
�

l=�
l=0

(9)

If an Euclidean space is considered, a=1 returns the average size defini-
tion, *� =_. On the other hand, in the limit of L� � 0, a divergent arc length
(and ratio, if _ is fixed to a constant value) is expected. We are thus led
to the sketch of Fig. 2, depicting schematically the increase of the geodesic
path with increasing average curvature (i.e., with decreasing L� values).
Observe that Eq. (7) descends from a general property of any space where
a normal chain displacement length distribution takes place. So, as
Gaussian statistics of subchains is typical for real dry polymer networks
(i.e., without solvent(19)), when L� =l<� Eq. (7) evaluates the displacement
from the pure normal case.

In (ii), Eq. (8) is a decreasing function of y, and we have:

lim
L� � l

b( y)={1
0

l=�
l=0

(10)

Fig. 2. Sketch of the geodesic length increase with decreasing BL constant.
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Fig. 3. Sketch of the available volume per micelle interpreted as the space contraction (or
dilatation) determined by a L� variation (see Eq. (8)).

Here, the average dimension *� converges to L when the space is
Euclidean, while decreasing the BL constant gives a space contraction.
From its definition, the quantity b is expected to be increasing with the
increase of the so-called dimensionless packing parameter, which estimates
the volume per chain length.(20) It reads ptv�s0 lc , v being the volume per
micelle, s0 the optimal area per headgroup and lc the maximum length that
the tail can take. Typical values go from pt� 1

3 for spherical aggregates,
to t1 for planar bilayers, while p>1 denotes inverted structure forma-
tions.(21) Correspondingly, the geometrical shape varies from conic to cylin-
dric, and changes orientation when the system is inverted, from cylindric to
conic. Thus, a relationship between Eq. (8) and micellar shape can be set.
Figures 3�4 reports qualitatively the packing parameter interpreted as the
space contraction�dilatation directly pointed out by Eq. 8) (say, as it
would be ptb3, with &=1). Correctly, if the volume available is a cylinder
(planar structure), the parallelism angle turns out to be ?�2. It decreases

Fig. 4. Graphical illustration of the correspondence between shape of micellar aggregates
and Eq. (8).
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towards lower values when spherical aggregates form, and increases up to
? in inverted systems.(22)

To work out Eqs. (7)�(8), we have to relate physics to space curvature
through the BL length, keeping in mind that 1�L� should increase with
molecular weight (M ), concentration (c) and�or other quantities asso-
ciated.(5) The approximations maken, like L � L� and rather simple dis-
tribution functions, do not suit the description of complex geometrical
transitions, particularly in the second case (ii). On this basis, in the follow-
ing we restrict ourselves to deal with swelling of polymer networks(23) and
simple growth phenomena of micellar aggregates.(24) We will see that the
agreement between theory and experiments is quite satisfactory in all cases
examined.

In Figs. 5a�b the equilibrium volume swelling parameter, :, has been
plotted against M*, where M* # [0, 1] is a reduced molecular weight,

Fig. 5. Experimental swelling degree behaviour versus reduced molecular weight, : vs M*,
in the systems (a) polystyrene-benzene and (b) poly (dimethylsiloxane)-toluene. Solid lines
denote theoretical curves of the form a3=a3(x), where x B M*/ and />0.
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normalized to the maximum extrapolated value. Systems under considera-
tion are (5a) polystyrene-benzene and (5b) poly (dimethylsiloxane)-toluene,
both at about the room temparature. All details can be exhaustively found
elsewhere.(25) Expressing : as a function of a, simply requires to remind the
definition of swelling degree, i.e., :=V�V0ta3>1, where V0 and V stand
respectively for network volumes in dry and isotropically swollen states. In
(5a) the scaling law of the end-to-end distance is shown when excluded
volume effects are considered in a good solvent, :tM3�5. Figure 5b shows
instead :tM3�8. To get a description of both locus points, we can build
a best fit function on Eq. (7) and the phenomenological dependence
x=mM*/ (B1�L� ), m>0 and / beings heuristic coefficients. As L� should
decrease with increasing M we expected />0 and, in the end, the sets of
values m&0.67; /&0.10 (5a), m&0.54; /&0.07 (5b) are found.

Figure 6 refers to the experimental work presented in ref. 26. It indi-
cates the behaviour of the apparent hydrodynamic radius of micelles (Rm)
in aqueous solutions of sodium do decyl-dioxyethylene-sulfate, at the room
temperature and with a counterionic strenght equating [Al3+]&2.4 mM.
Specifically, the dependence of the reduced radius R* # [0, 1] is here plot-
ted against the inverse of a reduced counterion concentration, c* # [0, 1].
It has been established that this system undergoes a sphere-to-rod transi-
tion which is sensible to the net charge of dissolved multivalent coun-
terions. Increasing the concentration of the ion Al3+, which is able to bind
together three surfactant headgroups at the micelle interface, decreases the
mean area per headgroup and therefore increases the packing param-
eter.(21) If so, we can set y=m�c*/, still with />0, and the best fit function
based on Eq. (8) with(24) &=2 now returns m&3.95; /&0.81.

Fig. 6. Experimental behaviour of the reduced hydrodynamic radius of micelles against the
inverse of the reduced counterion concentration, R* vs 1�c*, in aqueous solutions of sodium
dodecyl-dioxyethylene-sulfate. Solid lines denote theoretical curves of the form b=b( y), where
y B c*&/ and />0.
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CONCLUSIONS

1. The Bolyai�Lobachevskij (BL) formula has been employed to
write a curvature-dependent partition function defined over a Non-
Euclidean space.

2. Introducing a principle of equivalence like Boltmann factor W
BL length, brings us to a relation for the average geodesic path as a func-
tion of curvature. It is the analogy to the basic equation for average energy
and partition function, in the energy representation, and provides a simple
geometrical interpretation of statistical thermodynamics.

3. A polymer chain in solution has been recently tackled as a pertur-
bation to the Minkowskian metric of a relativistic space, structured by a
covariant diffusion law. The equation achieved (see Eq. 6) is thus expected
to be suitable for describing geometrical properties of polymer networks.

4. Use of simple distribution functions (i.e., Gaussian and exponen-
tial) and mean BL lengths, allowed us to interpret simple experimental
data of swelling and micellar growth. In the second case, a variation in the
so-called packing parameter can be seen as a length contraction-dilatation
of the space hosting the micelles.

APPENDIX

(i) Polymer Chain. Consider the partition function defined in Eq. (5)
as:

Z*=|
�

0
e&r�L� `(r) dr (11)

If one adopts(4, 17) `(r) B e&r2�?_ 2
, then gets:

Z* B �?
2

_e_ 2�?L� 2 {1&8 \ _
?1�2L� += (12)

8 denoting the so-called probability (or error) integral:(27)

8(z)=
2

?1�2 |
z

0
e&t 2

dt (13)

In accordance to Eq. (12):

d ln Z*=d ln _+
1
?

d \_2

L2++d ln {1&8 \ _
?1�2L� += (14)
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and, from the root mean square constancy, Eq. (6) becomes:

*� (_, L� )=
_e&?_2�4L� 2

1&8(?1�2_�2L� )
&

?_
2L�

(15)

Eq. (15) coincides with Eq. (7), once the new variables a=*�_ and x=
?1�2_�2L� are set.

(ii) Micellar chain. In this case, (17, 18) if `(r) B e&r�L, one obtains at
once (see Eqs. (5)�(6)):

Z* B
L� L

L� +L
=*� (16)

which is just Eq. (8), provided b=*� �L and y=L�L� .
More generally, let `(r) B r&&1e&r�L and & # R+, we yield:

Z* B \ 1
L�

+
1

L+
&&

1 (&) (17)

Since the Gamma function 1 (&) (Euler integral of the second kind) does
not depend upon *, we have in the end the same Eq. (8) for the rescaled
quantity b=*� �&L.
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